Plasma Arc Technology

AGENDA

- INTRODUCTION
- INDUSTRY OVERVIEW
- PPGV TECHNOLOGY
- SOLENA GROUP TEAM
- SUMMARY

Who Are We?

- Solena Group, a Delaware Registered US-Italian Corporation founded to Promote Plasma PGV Technology for:
 - Renewable Electric Energy Production from Waste, Coal Waste & Biomass
 - Hydrogen Gas and Syn-Gas Production
 - Shipboard Waste Management

Why Are We Here?

- Solena Group has:
 - A Unique Patented and Proven Technology
 - A Consortium of World Leading Energy & Engineering Companies
 - A Defined & Growing Market Demand (Contracts > 250 MM US\$) for Clean Renewable Energy
- Solena Group:
 - Designs & Builds Plasma Gasification Vitrification Plants
 - Produces Clean Electricity & Cleans the Environment
 - Plans To Utilize Coal Waste/Fines as Feedstock

Industry Overview

- High Demand for Renewable and Clean Electric Energy
- Lack of Efficient & Safe Waste Disposal Systems
- Increasingly Stringent Environmental Regulations
- Increasing Interest in Fuel Cell and Hydrogen Gas

The Market Opportunity

Mandate for Renewable Energy

Source: President Bush Report on Energy, May 2001; EU Energy Outlook to 2020; EIA Renewable Energy Trends

Coal Issues: Environmental/Energy Intersection

- Mining/Processing
 - Large Waste CoalPiles
 - Large amounts coal fines
 - Silt dams
 - Slurry Ponds
 - Water Contamination
 - Surface
 - Ground Water

- Utilization/Power Plants
 - Ash Disposal
 - Air Emissions
 - Water Contamination
 - Surface
 - Ground Water

Magnitude of Coal Waste Problem

- 2 billion tons of bituminous coal fines stored east of the Mississippi
- 50 million tons of coal fines produced annually from existing coal cleaning plants
- Utilities discard millions of tons of unburned carbon as ash waste

Typical Coal Waste Site

Acid Mine Drainage

Un-reclaimed Open Pit

What are the Alternatives Coal Wastes?

High Pressure Gasification: Low Availability, Requires specific feed stock preparation and sizing

Plasma Gasification Vitrification: High Availability, Wide range of feed stocks (waste, ash, fines), Environmentally Benign

Solution: PPGV Technology

- What is PPGV?
- What is Plasma?
- The Plasma torch
- How does it work?
- Why are we better?

Creation of the Plasma Gas

Creating the Plasma Torch and Plasma Heat

NASA Plasma Torch Testing

Plasma Technology: NASA's success story

Plasma Torch Power

Plasma Torches

- Developed into industrial tools for heating
- Variable size and capacity (50 KW and 2500 KW)
- Has performed at large scale (50 tons to 100 tons per hour) commercial facilities in US (GM), Canada (AlCan) and Japan (Kobe, Kawasaki)

The MARC-11 Plasma System

- Self-Stabilized Arc
- Mode of Operation: Non-Transferred Arc
- Nominal Power:
 - 600 2500 Kw
- Cathode: Cold

STC...Your Partner for Technology Solutions

- Torch
- Arc Power Supply
- Field Power Supply
- Ignitor
- Gas Supply System
- Deionized Water Supply System
- Control System

STC...Your Partner for Technology Solutions

Technology and Process

The Patented PGV Process

2. Organic Materials Inorganic Materials Gasified Into Vitrified Into H2 / CO...... Inert "Slag"

Plasma Gasification and Vitrification

Solena Group Patented PPGV Process

- Utilize Plasma torch heating up to 5000 Degrees Celsius to Produce Clean Renewable Energy
- All organic materials are Gasified into a H2/CO Fuel gas ("Syn-Gas")
- All Inorganic materials are Vitrified into inert "slag"
- Syn-gas is recovered as electricity/methanol or H2

Temperature Profile

- Exit Gas, 1700 C
- Coke Bed, 1800 4000 C
- Torch Plume, > 5000 C
- Slag Pool, 1700 1800 C

Gasification Reactions

CxHy + O2 = 2CO + H2 Exothermic

2C + O2 = 2CO Exothermic

C + H2O = CO + H2 Endothermic

PPGV Process Description

- Process Control by Computerized DCS
- Defined Start up, Steady State and Shut Down Procedure
- Control of All Process Variables including:
 - Feed Rate
 - Catalyst Feeding & Flux Feeding
 - Process Air/O2 Enriched
 - Torch Power
 - Catalyst and Waste Bed Height

PPGV Process Description

- Process Control Variables:
- Variation in Feed:
 - High Moisture Content: Lower Top Gas Temp
 - Lower Carbon Content: Lower HHV of Top Gas
 - Higher Inorganic Content: Increase Slag Flow &
 Decreased Temp
- Process Control Independent Variables:
 - Adjust Torch Power & Air Flow
 - Higher Temp in PGR: Higher Top Gas HHV & slag

PPGV Process Description

- Process Parameters Monitored & Controlled:
 - Exit Top Gas Composition, Temp & Flow Rate
 - Reactor Temp & Pressure @ 36" section
 - Refractory Temp at Bottom with Slag Flow and Basicity
 - Catalyst and Waste Bed Height

Plasma Syn-Gas Composition

- Dependent on Feed Composition
- CO and H2 Predominant and Stable
- Acid Gas H2S, HCL to be Scrubbed
- CO2 not stable in presence of Solid Carbon
- Minimum Soot and Particulates
- No Precursors to SVOCs

Vicenza Project Overall Heat/Mass Balance

All inorganic waste are vitrified in the plasma molten slag pool

Plasma Vitrification Provides Both Organic Destruction and Heavy Metal Immobilization

- New York Harbor Sediment Contains a Variety of Hazards:
 - Petroleum Residues, PAH's, and Solvents
 - PCB's, Dioxins and Furans
 - Pesticides
 - Heavy Metals (Pb, Cd, As, Zn, Cr, etc.)
 - Microbiological agents (fecal coliform, etc.)
- Plasma Vitrification Provides High Temperatures for Organic Destruction
- Glass Product Immobilizes Heavy Metals

Environmental Testing Showed Excellent Product Performance

- Molten Glass Poured Easily at 1250°C
- TCLP Meets all EPA Regulatory Limit
- High Destruction Efficiency for All Organics
 - 99.999999% Overall
 - > 99.98% for PCB's (< detection limit)
 - > 99.81% for PAH's
 - > 99.99% for Dioxins (< detection limit)
 - > 99.98% for Furans (< detection limit)

Vitrified Sediment Is Re-Usable for a Variety of Applications

- Architectural Tile Manufacture
- Glass Fiber (Rock Wool Insulation)
- Sandblasting Grit (Black Beauty®)
- Roadbed Aggregate ("Glasphalt")
- Roofing Granules (Shingle Manufacture)
- Recycle Glass Cullet
- Environmentally Innocuous Fill Material

"Black Gold" Tile Proved Superior to Recycle Glass Tile Product

Limitations of PPGV System

- Seen As A New Technology
- Seen As An Expensive Technology
- Lack of Strict Environmental Legislative Framework
- Land Disposal Cheaper in short term
- Not Seen As Energy Production
- Not a "Black Box"

Advantages of PPGV System

- Gasification Technology Performing at Atmospheric Pressure, Elevated Temperature and High Plant Availability
- Capable of Utilizing Integrated Mixed Waste and/or Coal Fines/Waste as Feed
- Compact and Modular
- Non-Polluting and Environmentally Safe
- High Recovery of Clean Renewable Energy as Electricity and/or H2
- Economically Competitive
- Proven Technology

Solena Group Coal Waste Gasification

- Fines, Coal Waste, and Ash as potential Feed Stock
- Modular Plant Design
 - From 50 MWe (Gross)/ 42 MWe (Net)
 - Excellent Gas Quality with minimal fly ash
 - Produces non-leachable slag as useful by-product
 - Small land requirements- Approximately 7 acres or less pending storage requirements

Emissions: Comparative Analysis

Technology	SOx	Nox	Ash			
557	Lb/Mwh	Lb/Mwh	Lb/Mwh			
Traditional Coal Burning	0.2 - 2.7	1.11 - 7	14			
Fluidized Gasification	2.7	4	14			
Texaco Gasification	0.1 - 0.5	0.56 - 4	0			
Plasma PGV	0.1 - 0.5	0.5 - 2	0			

The Market Opportunity

Solena Offers a Cost-Effective Base Load

Energy Generation Cost Comparison

	Geot	hermal	S	olena	(Solar		Coal		an Coal sification)		ural Gas pined Cycle)		Wind	Fuel Cell
Availability in %		80%		85%		30%		85%		40%		85%		31%	NA
Installed Cost / kW Adjusted for Availability	\$ \$	1,415 1,769	\$ \$	1,333 1,568	\$ \$	4,083 13,610	\$ \$	1,000 1,176	\$ \$	1,300 3,250	\$ \$	463 545	\$ \$	742 2,394	\$ 4,000 NA
Operating Cost / kWh Adjusted for Availability	\$ \$	0.009 0.011		0.011 0.013	\$ \$	0.005 0.015	\$ \$	0.015 0.018	\$ \$	0.015 0.038	\$ \$	0.021 0.024		0.009 0.030	\$ 0.140 NA

Note: Solena operating costs do not include receipt of tipping fees. Tipping fees outweigh operating costs by 2:1.

Source: Department of Energy, UBS Warburg, Goldman Sachs, Solena Management

Solena Group Project Business Model

- Project Options
 - BOO
 - BOT
 - Turn Key
- BOO/BOT Requirements
 - ROI/ROE must be attractive to Investment Community (20%/30% target)
 - Payback 5-7 years
 - Guaranteed Revenue Streams

Potential Revenue Streams

- Tipping Fee on Feed Stock
- Electricity Sales
- Sale of vitrified product
- Alternative Revenue Streams
 - Tax Relief/Incentives
 - Subsidized Electric Purchase for Renewable Energy
 - Environmental Remediation Subsidies

Solena Group Current Projects

- Valencia, Spain: 130,000 tpy WTE 75 MUS\$
- Kualiti Alam, Malaysia: 50,000 tpy 45 MUS\$
- Vicenza, Italy: 130,000 tpy 75 MUS\$
- Rome/Malagrotta: 24,000 tpy 12 MUS\$
- CFF, France: 150,000 tpy 75 MUS\$
- Ibie, Spain: 150,000 tpy 75 MUS\$

Plasma Equipment, Design and Integration Partner

- Westinghouse Plasma Corp.
 - Exclusive Teaming Partner
 - Leading Engineering Services and Expertise in the Plasma field
 - Commercially Proven Plasma Equipment

Process Design and Engineering Partners

- Stone & Webster/CH2MHill
 - Leading US High Tech Engineering Firms
 - World leading reputation in engineering & construction for land based and ship board system
 - Guaranteed Process Design and Performance

Gasification/APC Engineering Strategic Partner

- Le Gas Integral
 - World Leading Process Engineering in Gas cleaning system
 - Provide APC systems on TK basis
 - Provide APC systems for over 300 gasification plant worldwide
 - Provide complete performance guarantees

Development & Financial Partner

- ElectroAmbiente-ENEL Group
 - Project Development
 - Marketing & Financial Partner
 - Operations & Maintenance of Project

The Solena Group Team

- Has Participated in all major research, industrial and commercial plasma projects in the world
- Capacity to provide complete plasma solution:
 - Project Development, Project Financing Arrangement
 - Design, Engineer, Build
 - Plasma Equipment
 - Operate and Maintain
 - Complete Performance and Project Guarantees

The Solena Group Team

- Only Group in the World with Operating Plasma Industrial Plants
- Only Group in the World with Industrial Plasma Torches with Electrodes Life from 1000 to 3000 hrs.
- Only Group in the World with Plasma Experience in Handling MSW, Toxic Waste, Sludge at Industrial Capacity

- ALCAN Project Started in 1992
- Aluminum Dross Recovery
- MARC-11H Torch
 - 2 active, 1 spare
- Nominal Power:
 - Total System: 3.4 MW
 - Individual Torch: 800 1700 KW
- Process Gas: Air
- Electrode Life:
 - Anode: 3500 HoursCathode: 1500 Hours

ALCAN Pilot Plant Project

Operating Experience – Commercial Project Plasma Melter used at General Motors Plant in Defiance, Ohio

- Commissioned in 1987
- Grey Iron Foundry Process
- MARC-11H Torch
 - 6 active, 4 spares
- Nominal Power:
 - Total System: 10.2 MW
 - Individual Torch: 800 1700 KW
- Process Gas: Air
- Electrode Life:
 - Anode: 1000 HoursCathode: 500 Hours

- Waste-to Energy Ash Vitrification
 Commissioned in 1995
- MARC-3A Torches
 - 4 active, 1 spare
- Nominal Power:
 - Total System: 640 KW
 - Individual Torch: 60 160 KW
- Process Gas: Air
- Electrode Life:
 - Anode: 900 Hours
 - Cathode: 300 Hours

- Commissioned in 1996
- Supplemental Hot Metal Production
- MARC-11H Torch
 - 9 active, 2 spares
- Nominal Power:
 - Total System: 18MW
 - Individual Torch: 800 2400 KW
- Process Gas: Air
- Electrode Life:
 - Anode: 1500 HoursCathode: 750 Hours

Plasma-Fired Cupola at Geneva Steel in Provo, Utah is largest in the world and is designed to produce up to 1 million tons of molten metal per year.

Operating Experience – Commercial Project Toxic Waste Destruction Project at Plasma Center, Madison, PA

- **Project using Pyroplasma Trailer** Commenced in 1986
- Destruction of Liquid Toxic Waste
- MARC-11H Torch
 - 1 active, 1 spare
- **Nominal Power:**
 - Total System: 800 KW
 - Individual Torch: 600 800 KW
- Process gas: Oxygen
- **Electrode Life:**
 - Anode: 900 Hours Cathode: 200 Hours

Operating Experience – Pilot Plant Project

Plasma Cupola used for Landfill Reclamation at Plasma Center/Madison

■ Treatment of Contaminated Landfill Project – 1987 to 1990

■ MARC-11H

Power: 750 – 1550 KW

Process Gas: Air

Plasma Cupola Test Facility-state-of-the-art high temperature process development pilot plant.

Highlights:

- Non-hazardous slag produced containing heavy metals
- Metals recovered by byproduct (Iron, Copper)
- Steady state operation maintained for 72 hours

Project Guarantees

- Performance Guarantees
 - Plasma Heating Systems Guarantees
 - Complete Equipment Guarantees (All equipment is "off the shelf" industrial equipment)
 - EPC Contractor Guarantees
- All Guarantees wrapped and covered with Complete System Performance Insurance from Hartford Steam Boilers (AIG) and MARSH

